Course Name |
Numerical Methods for Engineers II
|
Code
|
Semester
|
Theory
(hour/week) |
Application/Lab
(hour/week) |
Local Credits
|
ECTS
|
FENG 346
|
Spring
|
3
|
0
|
3
|
6
|
Prerequisites |
|
|||||||
Course Language |
English
|
|||||||
Course Type |
Required
|
|||||||
Course Level |
First Cycle
|
|||||||
Mode of Delivery | - | |||||||
Teaching Methods and Techniques of the Course | Problem SolvingLecture / Presentation | |||||||
National Occupation Classification | - | |||||||
Course Coordinator | ||||||||
Course Lecturer(s) | ||||||||
Assistant(s) | - |
Course Objectives | The course objectives are to provide the central ideas behind algorithms for the numerical solution of differentiable optimization problems by presenting key methods for both unconstrained and constrained optimization, as well as providing theoretical justification as to why they succeed. Additionally, it is aimed to teach the computational tools available to solving optimization problems on computers once a mathematical formulation has been found. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning Outcomes |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Course Description | In this course, the following topics will be covered, with a special focus on practical applications: the importance of optimization, basic definition and facts on optimization problems, theory of linear programming, nonlinear programming (constrained and unconstrained optimization problems), numerical methods for constrained and unconstrained problems, numerical solution of partial differential(elliptic and parabolic) equations. |
|
Core Courses |
X
|
Major Area Courses | ||
Supportive Courses | ||
Media and Management Skills Courses | ||
Transferable Skill Courses |
Week | Subjects | Related Preparation | Learning Outcome |
1 | Introduction to Partial Differential Equations | Textbook 3: Chapter 28 | |
2 | Finite Difference Method: Simple Implicit and Explicit Finite Difference Schemes and Numerical Stability | Textbook 3: Chapter 29, 30 | |
3 | Finite Difference: Elliptic Equations | Textbook 3: Chapter 29 | |
4 | Finite Difference: Parabolic Equations | Textbook 3: Chapter 30 | |
5 | Optimization concept and historical perspective, basic concepts in optimization process. | Textbook 1: Chapter 1 Textbook 2: Chapter 1 | |
6 | Optimum Design Problem Formulation | Textbook 1: Chapter 2 | |
7 | Graphical Solution Method and Basic Optimization Concepts | Textbook 1: Chapter 3 | |
8 | Midterm Exam | ||
9 | Optimum Design Concepts: Optimality Conditions | Textbook 1: Chapter 4 | |
10 | Optimum Design Concepts: Optimality Conditions | Textbook 1: Chapter 4 | |
11 | Numerical Methods for Unconstrained Optimization | Textbook 1: Chapter 10 | |
12 | Numerical Methods for Constrained Optimization | Textbook 1: Chapter 12 | |
13 | Linear Programming | Textbook 1: Chapter 8 | |
14 | Linear Programming | Textbook 1: Chapter 8 | |
15 | Review of the semester | ||
16 | Final |
Course Notes/Textbooks |
|
Suggested Readings/Materials |
|
Semester Activities | Number | Weigthing | LO 1 | LO 2 | LO 3 | LO 4 | LO 5 | LO 6 |
Participation | ||||||||
Laboratory / Application | ||||||||
Field Work | ||||||||
Quizzes / Studio Critiques | ||||||||
Portfolio | ||||||||
Homework / Assignments |
1
|
40
|
||||||
Presentation / Jury | ||||||||
Project | ||||||||
Seminar / Workshop | ||||||||
Oral Exams | ||||||||
Midterm |
1
|
20
|
||||||
Final Exam |
1
|
40
|
||||||
Total |
Weighting of Semester Activities on the Final Grade |
2
|
60
|
Weighting of End-of-Semester Activities on the Final Grade |
1
|
40
|
Total |
Semester Activities | Number | Duration (Hours) | Workload |
---|---|---|---|
Theoretical Course Hours (Including exam week: 16 x total hours) |
16
|
3
|
48
|
Laboratory / Application Hours (Including exam week: '.16.' x total hours) |
16
|
0
|
|
Study Hours Out of Class |
14
|
3
|
42
|
Field Work |
0
|
||
Quizzes / Studio Critiques |
0
|
||
Portfolio |
0
|
||
Homework / Assignments |
7
|
8
|
56
|
Presentation / Jury |
0
|
||
Project |
0
|
||
Seminar / Workshop |
0
|
||
Oral Exam |
0
|
||
Midterms |
1
|
14
|
14
|
Final Exam |
1
|
20
|
20
|
Total |
180
|
#
|
PC Sub | Program Competencies/Outcomes |
* Contribution Level
|
||||
1
|
2
|
3
|
4
|
5
|
|||
1 |
To have adequate knowledge in Mathematics, Mathematics based physics, statistics and linear algebra and Mechanical Engineering; to be able to use theoretical and applied information in these areas on complex engineering problems. |
-
|
-
|
-
|
X
|
-
|
|
2 |
To be able to identify, define, formulate, and solve complex Mechanical Engineering problems; to be able to select and apply proper analysis and modeling methods for this purpose. |
-
|
-
|
-
|
X
|
-
|
|
3 |
To be able to design a thermal and mechanical system, process, device or product under realistic constraints and conditions, in such a way as to meet the requirements; to be able to apply modern design methods for this purpose. |
X
|
-
|
-
|
-
|
-
|
|
4 |
To be able to devise, select, and use modern techniques and tools needed for analysis and solution of complex problems in engineering applications. |
-
|
-
|
X
|
-
|
-
|
|
5 |
To be able to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or Mechanical Engineering research topics. |
-
|
-
|
-
|
-
|
-
|
|
6 |
To be able to work efficiently in Mechanical Engineering disciplinary and multi-disciplinary teams; to be able to work individually. |
-
|
-
|
-
|
-
|
-
|
|
7 |
To be able to communicate effectively in Turkish, both orally and in writing; to be able to author and comprehend written reports, to be able to prepare design and implementation reports, to present effectively, to be able to give and receive clear and comprehensible instructions. |
-
|
-
|
-
|
-
|
-
|
|
8 |
To have knowledge about global and social impact of engineering practices on health, environment, and safety; to have knowledge about contemporary issues as they pertain to engineering; to be aware of the legal ramifications of engineering solutions. |
-
|
-
|
-
|
-
|
-
|
|
9 |
To be aware of ethical behavior, professional and ethical responsibility; to have knowledge about standards utilized in engineering applications. |
-
|
-
|
-
|
-
|
-
|
|
10 |
To have knowledge about industrial practices such as project management, risk management, and change management; to have awareness of entrepreneurship and innovation; to have knowledge about sustainable development. |
-
|
-
|
-
|
-
|
-
|
|
11 |
To be able to collect data in the area of Mechanical Engineering, and to be able to communicate with colleagues in a foreign language. |
-
|
-
|
-
|
-
|
-
|
|
12 |
To be able to speak a second foreign language at a medium level of fluency efficiently. |
-
|
-
|
-
|
-
|
-
|
|
13 |
To recognize the need for lifelong learning; to be able to access information, to be able to stay current with developments in science and technology; to be able to relate the knowledge accumulated throughout the human history to Mechanical Engineering. |
-
|
-
|
-
|
-
|
-
|
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest
As Izmir University of Economics transforms into a world-class university, it also raises successful young people with global competence.
More..Izmir University of Economics produces qualified knowledge and competent technologies.
More..Izmir University of Economics sees producing social benefit as its reason for existence.
More..