| Course Name |
Calculus II
|
|
Code
|
Semester
|
Theory
(hour/week) |
Application/Lab
(hour/week) |
Local Credits
|
ECTS
|
|
MATH 154
|
SPRING
|
2
|
2
|
3
|
6
|
| Prerequisites | MATH 153 To get a grade of at least FD | |||||
| Course Language | English | |||||
| Course Type | Required (Core Course) | |||||
| Course Level | First Cycle | |||||
| Mode of Delivery | ||||||
| Teaching Methods and Techniques of the Course | - | |||||
| National Occupational Classification Code | - | |||||
| Course Coordinator |
|
|||||
| Course Lecturer(s) |
|
|||||
| Assistant(s) | - | |||||
| Course Objectives | In this course, integration techniques and application of integration, Taylor and Maclaurin series and their applications, functions of several variables, their derivatives, integrals and applications are examined. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Learning Outcomes |
The students who succeeded in this course;
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Course Description | This course aims to provide information about integration techniques and applications, define functions of several variables, partial differentiation and multiple integration. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Related Sustainable Development Goals |
-
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
Core Courses |
|
| Major Area Courses |
X
|
|
| Supportive Courses |
|
|
| Media and Managment Skills Courses |
|
|
| Transferable Skill Courses |
|
| Week | Subjects | Required Materials | Learning Outcome |
| 1 | The method of substitution | Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition, (Pearson, 2018). Section 5.6, 5.7 | - |
| 2 | Integration by parts, integrals of rational functions | Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition, (Pearson, 2018). Section 6.1, 6.2 | - |
| 3 | Integrals of rational functions, inverse substitutions | Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition, (Pearson, 2018). Section 6.2, 6.3 | - |
| 4 | Inverse substitutions, improper Integrals | Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition, (Pearson, 2018). Section 6.3, 6.5 | - |
| 5 | Solids of revolution | Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition, (Pearson, 2018). Section 7.1 | - |
| 6 | Taylor and Maclaurin series, applications of Taylor and Maclaurin series, Functions of several variables | Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition, (Pearson, 2018). Section 9.6, 9.7, 12.1 | - |
| 7 | Limits and continuity | Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition, (Pearson, 2018). Section 12.2 | - |
| 8 | Partial derivatives, Gradients and directional derivatives | Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition, (Pearson, 2018). Section 12.3, 12.7 | - |
| 9 | Midterm Exam | - | |
| 10 | Gradients and directional derivatives, Extreme values | Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition, (Pearson, 2018). Section 12.7, 13.1 | - |
| 11 | Extreme values, Extreme values of functions defined on restricted domains | Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition, (Pearson, 2018). Section 13.1, 13.2 | - |
| 12 | Extreme values of functions defined on restricted domains, Lagrange multipliers | Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition, (Pearson, 2018). Section 13.2, 13.3 | - |
| 13 | Iteration of double integrals in cartesian coordinates, double integrals in polar coordinates | Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition, (Pearson, 2018). Section 14.2, 14.4 | - |
| 14 | Triple integrals. Change of variables in triple integrals | Robert A. Adams, Christopher Essex, Calculus, "A complete course", 9th edition, (Pearson, 2018). Section 14.5, 14.6 | - |
| 15 | Semester review | - | |
| 16 | Final | - |
| Course Notes/Textbooks |
R Robert A. Adams Christopher Essex Calculus "A complete course" 9th edition (Pearson 2018). ISBN 978-0-13-415436-7 |
| Suggested Readings/Materials | - |
| Semester Activities | Number | Weighting | LO1 | LO2 | LO3 | LO4 | LO5 | LO6 | LO7 |
| Quizzes / Studio Critiques | 5 | 20 | X | X | X | X | X | X | X |
| Midterm | 1 | 30 | X | X | X | X | X | X | X |
| Final Exam | 1 | 50 | X | X | X | X | X | X | X |
| Total | 7 | 100 |
| Semester Activities | Number | Duration (Hours) | Workload |
|---|---|---|---|
| Participation | - | - | - |
| Theoretical Course Hours | 16 | 2 | 32 |
| Laboratory / Application Hours | 16 | 2 | 32 |
| Study Hours Out of Class | 14 | 3 | 42 |
| Field Work | - | - | - |
| Quizzes / Studio Critiques | 5 | 4 | 20 |
| Portfolio | - | - | - |
| Homework / Assignments | - | - | - |
| Presentation / Jury | - | - | - |
| Project | - | - | - |
| Seminar / Workshop | - | - | - |
| Oral Exams | - | - | - |
| Midterms | 1 | 22 | 22 |
| Final Exam | 1 | 32 | 32 |
| Total | 180 |
| # | PC Sub | Program Competencies/Outcomes | * Contribution Level | ||||
| 1 | 2 | 3 | 4 | 5 | |||
| 1 |
Engineering Knowledge: Knowledge of mathematics, science, basic engineering, computation, and related engineering discipline-specific topics; the ability to apply this knowledge to solve complex engineering problems. |
||||||
| 1 |
Mathematics |
LO1 LO2 LO3 LO4 LO5 LO6 LO7 | |||||
| 2 |
Science |
||||||
| 3 |
Basic Engineering |
||||||
| 4 |
Computation |
||||||
| 5 |
Related engineering discipline-specific topics |
||||||
| 6 |
The ability to apply this knowledge to solve complex engineering problems |
||||||
| 2 |
Problem Analysis: Ability to identify, formulate and analyze complex engineering problems using basic knowledge of science, mathematics and engineering, and considering the UN Sustainable Development Goals relevant to the problem being addressed. |
||||||
| 3 |
Engineering Design: The ability to devise creative solutions to complex engineering problems; the ability to design complex systems, processes, devices or products to meet current and future needs, considering realistic constraints and conditions. |
||||||
| 1 |
Ability to design creative solutions to complex engineering problems |
||||||
| 2 |
Ability to design complex systems, processes, devices or products to meet current and future needs, considering realistic constraints and conditions |
||||||
| 4 |
Use of Techniques and Tools: Ability to select and use appropriate techniques, resources, and modern engineering and computing tools, including estimation and modeling, for the analysis and solution of complex engineering problems, while recognizing their limitations. |
||||||
| 5 |
Research and Investigation: Ability to use research methods to investigate complex engineering problems, including literature research, designing and conducting experiments, collecting data, and analyzing and interpreting results. |
||||||
| 1 |
Literature research for the study of complex engineering problems |
||||||
| 2 |
Designing experiments |
||||||
| 3 |
Ability to use research methods, including conducting experiments, collecting data. analyzing and interpreting results |
||||||
| 6 |
Global Impact of Engineering Practices: Knowledge of the impacts of engineering practices on society, health and safety, economy, sustainability, and the environment, within the context of the UN Sustainable Development Goals; awareness of the legal implications of engineering solutions. |
||||||
| 1 |
Knowledge of the impacts of engineering practices on society, health and safety, economy, sustainability, and the environment, within the context of the UN Sustainable Development Goals |
||||||
| 2 |
Awareness of the legal implications of engineering solutions |
||||||
| 7 |
Ethical Behavior: Acting in accordance with the principles of the engineering profession, knowledge about ethical responsibility; awareness of being impartial, without discrimination, and being inclusive of diversity. |
||||||
| 1 |
Acting in accordance with the principles of the engineering profession, knowledge about ethical responsibility ethical responsibility |
||||||
| 2 |
Awareness of being impartial and inclusive of diversity, without discriminating on any subject |
||||||
| 8 |
Individual and Teamwork: Ability to work effectively, individually and as a team member or leader on interdisciplinary and multidisciplinary teams (face-to-face, remote or hybrid). |
||||||
| 1 |
Ability to work individually and within the discipline |
||||||
| 2 |
Ability to work effectively as a team member or leader in multidisciplinary teams (face-to-face, remote or hybrid) |
||||||
| 9 |
Verbal and Written Communication: Taking into account the various differences of the target audience (such as education, language, profession) on technical issues. |
||||||
| 1 |
Ability to communicate verbally |
||||||
| 2 |
Ability to communicate effectively in writing |
||||||
| 10 |
Project Management: Knowledge of business practices such as project management and economic feasibility analysis; awareness of entrepreneurship and innovation. |
||||||
| 1 |
Knowledge of business practices such as project management and economic feasibility analysis |
||||||
| 2 |
Awareness of entrepreneurship and innovation |
||||||
| 11 |
Lifelong Learning: Lifelong learning skills that include being able to learn independently and continuously, adapting to new and developing technologies, and thinking questioningly about technological changes. |
||||||
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest
As Izmir University of Economics transforms into a world-class university, it also raises successful young people with global competence.
More..Izmir University of Economics produces qualified knowledge and competent technologies.
More..Izmir University of Economics sees producing social benefit as its reason for existence.
More..