| Dersin Adı |
Introduction to Differential Equations I
|
|
Kodu
|
Yarıyıl
|
Teori
(saat/hafta) |
Uygulama/Lab
(saat/hafta) |
Yerel Kredi
|
AKTS
|
|
MATH 207
|
SPRING
|
2
|
2
|
3
|
5
|
| Ön-Koşul(lar) | MATH 154 To get a grade of at least FD or MATH 110 To get a grade of at least FD | |||||
| Dersin Dili | English | |||||
| Dersin Türü | Zorunlu | |||||
| Dersin Düzeyi | Lisans | |||||
| Dersin Veriliş Şekli | face to face | |||||
| Dersin Öğretim Yöntem ve Teknikleri | Problem Solving Case Study Q&A | |||||
| Ulusal Meslek Sınıflandırma Kodu | - | |||||
| Dersin Koordinatörü |
|
|||||
| Öğretim Eleman(lar)ı |
|
|||||
| Yardımcı(ları) | - | |||||
| Dersin Amacı | This course is an introduction to the basic concepts, theory, methods and applications of ordinary differential equations. The aim of this course is to solve differential equations and to develop the basics of modeling of real life problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Öğrenme Çıktıları |
Bu dersi başarıyla tamamlayabilen öğrenciler;
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Ders Tanımı | In this course basic concepts of differential equations will be discussed.The types of first order ordinary differential equations will be given and the solution methods will be taught. Also, solution methods for higherorder ordinary differential equations will be analyzed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Dersin İlişkili Olduğu Sürdürülebilir Kalkınma Amaçları |
-
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
Temel Ders |
X
|
| Uzmanlık/Alan Dersleri |
|
|
| Destek Dersleri |
|
|
| İletişim ve Yönetim Becerileri Dersleri |
|
|
| Aktarılabilir Beceri Dersleri |
|
| Hafta | Konular | Ön Hazırlık | Öğrenme Çıktısı |
| 1 | Introduction, classification of differential equations, mathematical modeling, and the fundamentals of ecological mathematical models. | R. Kent Nagle, Edward B. Saff and Arthur David Snider, ''Fundamentals of Differential Equations and Boundary Value Problems'’, (Pearson, 2011), Section 1.1 | - |
| 2 | Separable Differential Equations. First Order Linear Differential Equations. | R. Kent Nagle, Edward B. Saff and Arthur David Snider, ''Fundamentals of Differential Equations and Boundary Value Problems'’, (Pearson, 2011), Section: 2.2, 2.3 | - |
| 3 | R. Kent Nagle, Edward B. Saff and Arthur David Snider, ''Fundamentals of Differential Equations and Boundary Value Problems'’, (Pearson, 2011), Section: 2.2, 2.3 | R. Kent Nagle, Edward B. Saff and Arthur David Snider, ''Fundamentals of Differential Equations and Boundary Value Problems'’, (Pearson, 2011), Section 2.4, 2.5. | - |
| 4 | Bernoulli Differential Equations. Existence and uniqueness theorem. | R. Kent Nagle, Edward B. Saff and Arthur David Snider, ''Fundamentals of Differential Equations and Boundary Value Problems'’, (Pearson, 2011), Section 2.6, 13.2 | - |
| 5 | Homogeneous, Non-homogeneous Constant Coefficient Second Order Differential Equations. The Method of Undetermined Coefficients. | R. Kent Nagle, Edward B. Saff and Arthur David Snider, ''Fundamentals of Differential Equations and Boundary Value Problems'’, (Pearson, 2011), Section 4.2, 4.4 | - |
| 6 | Non-homogeneous Constant Coefficient Second Order Differential Equations. The Method of Undetermined Coefficients. Variation of parameters. | R. Kent Nagle, Edward B. Saff and Arthur David Snider, ''Fundamentals of Differential Equations and Boundary Value Problems'’, (Pearson, 2011), Section 4.4, 4.6 | - |
| 7 | Homogeneous, Non-homogeneous Variable Coefficient Second Order Differential Equations. | R. Kent Nagle, Edward B. Saff and Arthur David Snider, ''Fundamentals of Differential Equations and Boundary Value Problems'’, (Pearson, 2011), Section 4.7 | - |
| 8 | Higher order linear equations: General theory, systems of linear differential equations, and distinct eigenvalues, with applications in ecosystem modeling and biodiversity dynamics. | R. Kent Nagle, Edward B. Saff and Arthur David Snider, ''Fundamentals of Differential Equations and Boundary Value Problems'’, (Pearson, 2011), Section 9.5-9.6 | - |
| 9 | Midterm Exam | - | |
| 10 | Systems of Linear Differential Equations, Distinct eigenvalues and Complex eigenvalues. | R. Kent Nagle, Edward B. Saff and Arthur David Snider, ''Fundamentals of Differential Equations and Boundary Value Problems'’, (Pearson, 2011), Section 9.5-9.6 | - |
| 11 | Systems of Linear Differential Equations, Complex and repeated eigenvalues. | R. Kent Nagle, Edward B. Saff and Arthur David Snider, ''Fundamentals of Differential Equations and Boundary Value Problems'’, (Pearson, 2011), Section 9.5-9.6 | - |
| 12 | Laplace Transforms: Definition of the Laplace Transform, Inverse Laplace Transforms | R. Kent Nagle, Edward B. Saff and Arthur David Snider, ''Fundamentals of Differential Equations and Boundary Value Problems'ʼ, (Pearson, 2011), Section 7.2, 7.3, 7.4 | - |
| 13 | Solving Initial Value Problems by Laplace Transforms. Laplace transforms of discontinuous functions: Unit step functions, pulse functions and impulse functions. | R. Kent Nagle, Edward B. Saff and Arthur David Snider, ''Fundamentals of Differential Equations and Boundary Value Problems'ʼ, (Pearson, 2011), Section 7.5, 7.9 | - |
| 14 | Laplace transforms of discontinuous functions: Unit step functions, pulse functions and impulse functions. Convolution Integral, Convolution theorem. Solutions of integro differential equations. | R. Kent Nagle, Edward B. Saff and Arthur David Snider, ''Fundamentals of Differential Equations and Boundary Value Problems'ʼ, (Pearson, 2011), Section 7.6, 7.8 7.9 | - |
| 15 | Semester review | - | |
| 16 | Final exam | - |
| Ders Kitabı |
Kent Nagle Edward B. Saff and Arthur David Snider “Fundamentals of Differential Equations and Boundary Value Problems” 6th Edition (Pearson 2011) ISBN-13: 978-0321747747. |
| Önerilen Okumalar/Materyaller |
Shepley L. Ross ''Introduction to Ordinary Differential Equations'' Fourth Edition (John Wiley and Sons 1989) ISBN-13: 978-0471032953. |
| Yarıyıl Aktiviteleri | Sayı | Katkı Payı % | LO1 | LO2 | LO3 | LO4 | LO5 | LO6 |
| Küçük Sınav / Stüdyo Kritiği | 2 | 20 | X | X | X | X | X | X |
| Ara Sınav | 1 | 30 | X | X | X | X | X | X |
| Final Sınavı | 1 | 50 | X | X | X | X | X | X |
| Toplam | 4 | 100 |
| Yarıyıl Aktiviteleri | Sayı | Süre (Saat) | İş Yükü |
|---|---|---|---|
| Katılım | - | - | - |
| Teorik Ders Saati | 16 | 2 | 32 |
| Laboratuvar / Uygulama Ders Saati | 16 | 2 | 32 |
| Sınıf Dışı Ders Çalışması | 14 | 3 | 42 |
| Arazi Çalışması | - | - | - |
| Küçük Sınav / Stüdyo Kritiği | 2 | 4 | 8 |
| Portfolyo | - | - | - |
| Ödev | - | - | - |
| Sunum / Jüri Önünde Sunum | - | - | - |
| Proje | - | - | - |
| Seminer/Çalıştay | - | - | - |
| Sözlü Sınav | - | - | - |
| Ara Sınavlar | 1 | 16 | 16 |
| Final Sınavı | 1 | 20 | 20 |
| Toplam | 150 |
| # | PC Alt | Program Yeterlilikleri / Çıktıları | * Katkı Düzeyi | ||||
| 1 | 2 | 3 | 4 | 5 | |||
| Program yeterlilik verisi bulunamadı. | |||||||
*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest
İzmir Ekonomi Üniversitesi, dünya çapında bir üniversiteye dönüşürken aynı zamanda küresel çapta yetkinliğe sahip başarılı gençler yetiştirir.
Daha Fazlası..İzmir Ekonomi Üniversitesi, nitelikli bilgi ve yetkin teknolojiler üretir.
Daha Fazlası..İzmir Ekonomi Üniversitesi, toplumsal fayda üretmeyi varlık nedeni olarak görür.
Daha Fazlası..