İzmir Ekonomi Üniversitesi
  • ENGLISH

  • MÜHENDİSLİK FAKÜLTESİ

    Makine Mühendisliği

    ME 431 | Ders Tanıtım Bilgileri

    Dersin Adı
    Momentum, Heat and Mass Transfer
    Kodu
    Yarıyıl
    Teori
    (saat/hafta)
    Uygulama/Lab
    (saat/hafta)
    Yerel Kredi
    AKTS
    ME 431
    FALL
    2
    2
    3
    5

    Ön-Koşul(lar) ME 304 To get a grade of at least FD and ME 305 To get a grade of at least FD
    Dersin Dili English
    Dersin Türü ELECTIVE_COURSE
    Dersin Düzeyi Lisans
    Dersin Veriliş Şekli Face to face
    Dersin Öğretim Yöntem ve Teknikleri Problem Solving- Lecture / Presentation
    Ulusal Meslek Sınıflandırma Kodu -
    Dersin Koordinatörü
    • Dr. Öğr. Üyesi Fatma Pınar Gördesli Duatepe
    Öğretim Eleman(lar)ı
    • Dr. Öğr. Üyesi Fatma Pınar Gördesli Duatepe
    Yardımcı(ları) -
    Dersin Amacı It is aimed the student to be able to write and understand microscopic and macroscopic momentum, energy and mass balances, estimate values for necessary transport properties, and develop mathematical models based on the differential equations of momentum, heat, and mass transfer and their simplified forms.
    Öğrenme Çıktıları Bu dersi başarıyla tamamlayabilen öğrenciler;
    Ad Açıklama PC Alt * Katkı Düzeyi
    1 2 3 4 5
    LO1 derive mathematical models that describe the physical behavior of a system 1.6 X
    LO2 compare momentum, heat, and mass transfer at microscopic and macroscopic levels. 1.6 X
    LO3 determine the boundary conditions for momentum, heat, and mass transfer in a given system 1.6 X
    LO4 design momentum, heat, and mass transfer models for a given system 3.1 X
    LO5 apply momentum, heat, and mass transfer equations to solve relevant engineering problems 1.6 X
    LO6 explain momentum, heat, and mass transfer mechanisms 1.6 X
    Ders Tanımı The main topics included in this course are coordinate systems, initial and boundary conditions of differential equations, transport mechanisms, and the following fundamental laws of momentum, heat, and mass transfer: Newton's law of viscosity, Fourier's law of heat conduction and Fick's law of diffusion, momentum, energy and mass balances at microscopic and macroscopic levels, dimensional analysis, Buckigham-π Theorem, and their applications.
    Dersin İlişkili Olduğu Sürdürülebilir Kalkınma Amaçları
    -

     



    Dersin Kategorisi

    Temel Ders
    Uzmanlık/Alan Dersleri
    X
    Destek Dersleri
    İletişim ve Yönetim Becerileri Dersleri
    Aktarılabilir Beceri Dersleri

     

    HAFTALIK KONULAR VE İLGİLİ ÖN HAZIRLIK ÇALIŞMALARI

    Hafta Konular Ön Hazırlık Öğrenme Çıktısı
    1 Coordinate Systems, Basic Mathematical Tools and Operators in Transport Phenomena Appendix A: Vector and Tensor Notations (R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot 'Transport Phenomena' John Wiley & Sons, Inc., Second Edition, 2002.), Chapter 1 (Introduction to Ordinary Differential Equations, Shepley L. Ross, 4th Edition, Wiley, 1989.) LO1
    2 Differential Concept, Boundary and Initial Conditions of Differential Equations, Average Values of Functions Appendix C: Mathematical Topics (R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot 'Transport Phenomena' John Wiley & Sons, Inc., Second Edition, 2002.), Chapter 2 (Introduction to Ordinary Differential Equations, Shepley L. Ross, 4th Edition, Wiley, 1989.) LO1
    3 Newton's Law of Viscosity; Pressure and Temperature Dependence of Viscosity, Molecular Theory of the Viscosity of Gases at Low Density, Molecular Theory of the Viscosity of Liquids Chapter 1 (R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot 'Transport Phenomena' John Wiley & Sons, Inc., Second Edition, 2002.) LO2
    4 Shell Momentum Balances and Boundary Conditions, Flow of a Falling Film Chapter 2 (R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot 'Transport Phenomena' John Wiley & Sons, Inc., Second Edition, 2002.) LO3
    5 Flow through a Circular Tube, Flow through an Annulus Chapter 2 (R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot 'Transport Phenomena' John Wiley & Sons, Inc., Second Edition, 2002.) LO3
    6 The Equation of Continuity, The Equation of Motion, The Equation of Mechanical Energy, The Equations of Change in Terms of the Substantial Derivative, Use of the Equations of Change to Solve Flow Problems Chapter 3 (R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot 'Transport Phenomena' John Wiley & Sons, Inc., Second Edition, 2002.) LO4
    7 Fourier's Law of Heat Conduction, Temperature and Pressure Dependence of Thermal Conductivity, Shell Energy Balances; Boundary Conditions Chapter 9 (R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot 'Transport Phenomena' John Wiley & Sons, Inc., Second Edition, 2002.) LO3
    8 Midterm Exam -
    9 Heat Conduction with an Electrical Heat Source, Heat Conduction with a Nuclear Heat Source Chapter 10 (R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot 'Transport Phenomena' John Wiley & Sons, Inc., Second Edition, 2002. LO4
    10 Heat Conduction through Composite Walls, Heat Conduction in a Cooling Fin Chapter 10 (R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot 'Transport Phenomena' John Wiley & Sons, Inc., Second Edition, 2002. LO4
    11 Fick's Law of Binary Diffusion, Temperature and Pressure Dependence of Diffusivities, Shell Mass Balances; Boundary Conditions Chapter 17 (R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot 'Transport Phenomena' John Wiley & Sons, Inc., Second Edition, 2002. LO3
    12 Diffusion into a Falling Liquid Film Chapter 18 (R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot 'Transport Phenomena' John Wiley & Sons, Inc., Second Edition, 2002.) LO4
    13 Dimensional analysis, Buckigham-π Theorem and their Applications Chapters 3, 11 and 19 (R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot 'Transport Phenomena' John Wiley & Sons, Inc., Second Edition, 2002.), Chapter 7 (Bruce R. Munson, Theodore H. Okiishi, Wade W. Huebsch, and Alric P. Rothmayer. Fundamentals of Fluid Mechanics. 7th Edition, John Wiley and Sons, 2013.) LO5
    14 Dimensional analysis, Buckigham-π Theorem and their Applications Chapters 3, 11 and 19 (R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot 'Transport Phenomena' John Wiley & Sons, Inc., Second Edition, 2002.), Chapter 7 (Bruce R. Munson, Theodore H. Okiishi, Wade W. Huebsch, and Alric P. Rothmayer. Fundamentals of Fluid Mechanics. 7th Edition, John Wiley and Sons, 2013.) LO6
    15 Review of the Semester - -
    16 Final Exam - -

     

    Ders Kitabı Lecture Notes (R. Byron Bird Warren E. Stewart Edwin N. Lightfoot 'Transport Phenomena' John Wiley & Sons Inc. Second Edition 2002.)
    Önerilen Okumalar/Materyaller R. Byron Bird Warren E. Stewart Edwin N. Lightfoot 'Transport Phenomena' John Wiley & Sons Inc. Second Edition 2002.
    Bruce R. Munson Theodore H. Okiishi Wade W. Huebsch and Alric P. Rothmayer. Fundamentals of Fluid Mechanics. 7th Edition John Wiley and Sons 2013.
    Frank P. Incropera David P. DeWitt Theodore L. Bergman Adrienne S. Lavine Fundamentals of Heat and Mass Transfer John Wiley & Sons 2006.
    C. J. Geankoplis Transport Processes and Separation Process Principles 4th edition Prentice-Hall 2003.
    Introduction to Ordinary Differential Equations Shepley L. Ross 4th Edition Wiley 1989.

     

    DEĞERLENDİRME ÖLÇÜTLERİ

    Yarıyıl Aktiviteleri Sayı Katkı Payı % LO1 LO2 LO3 LO4 LO5 LO6
    Küçük Sınav / Stüdyo Kritiği 3 30 X X X
    Ara Sınav 1 30 X X X X
    Final Sınavı 1 40 X X X X X X
    Toplam 5 100

     

    AKTS / İŞ YÜKÜ TABLOSU

    Yarıyıl Aktiviteleri Sayı Süre (Saat) İş Yükü
    Katılım - - -
    Teorik Ders Saati 16 2 32
    Laboratuvar / Uygulama Ders Saati 16 2 32
    Sınıf Dışı Ders Çalışması 16 2 32
    Arazi Çalışması - - -
    Küçük Sınav / Stüdyo Kritiği 3 4 12
    Portfolyo - - -
    Ödev - - -
    Sunum / Jüri Önünde Sunum - - -
    Proje - - -
    Seminer/Çalıştay - - -
    Sözlü Sınav - - -
    Ara Sınavlar 1 18 18
    Final Sınavı 1 24 24
        Toplam 150

     

    DERSİN ÖĞRENME ÇIKTILARININ PROGRAM YETERLİLİKLERİ İLE İLİŞKİSİ

    # PC Alt Program Yeterlilikleri / Çıktıları * Katkı Düzeyi
    1 2 3 4 5
    1

    Engineering Knowledge: Knowledge of mathematics, science, basic engineering, computation, and related engineering discipline-specific topics; the ability to apply this knowledge to solve complex engineering problems.

    1

    Mathematics

    2

    Science

    3

    Basic Engineering

    4

    Computation

    5

    Related engineering discipline-specific topics

    6

    The ability to apply this knowledge to solve complex engineering problems

    LO1 LO2 LO3 LO5 LO6
    2

    Problem Analysis: Ability to identify, formulate and analyze complex engineering problems using basic knowledge of science, mathematics and engineering, and considering the UN Sustainable Development Goals relevant to the problem being addressed.

    3

    Engineering Design: The ability to devise creative solutions to complex engineering problems; the ability to design complex systems, processes, devices or products to meet current and future needs, considering realistic constraints and conditions.

    1

    Ability to design creative solutions to complex engineering problems

    LO4
    2

    Ability to design complex systems, processes, devices or products to meet current and future needs, considering realistic constraints and conditions

    4

    Use of Techniques and Tools: Ability to select and use appropriate techniques, resources, and modern engineering and computing tools, including estimation and modeling, for the analysis and solution of complex engineering problems, while recognizing their limitations.

    5

    Research and Investigation: Ability to use research methods to investigate complex engineering problems, including literature research, designing and conducting experiments, collecting data, and analyzing and interpreting results.

    1

    Literature research for the study of complex engineering problems

    2

    Designing experiments

    3

    Ability to use research methods, including conducting experiments, collecting data. analyzing and interpreting results

    6

    Global Impact of Engineering Practices: Knowledge of the impacts of engineering practices on society, health and safety, economy, sustainability, and the environment, within the context of the UN Sustainable Development Goals; awareness of the legal implications of engineering solutions.

    1

    Knowledge of the impacts of engineering practices on society, health and safety, economy, sustainability, and the environment, within the context of the UN Sustainable Development Goals

    2

    Awareness of the legal implications of engineering solutions

    7

    Ethical Behavior: Acting in accordance with the principles of the engineering profession, knowledge about ethical responsibility; awareness of being impartial, without discrimination, and being inclusive of diversity.

    1

    Acting in accordance with the principles of the engineering profession, knowledge about ethical responsibility ethical responsibility

    2

    Awareness of being impartial and inclusive of diversity, without discriminating on any subject

    8

    Individual and Teamwork: Ability to work effectively, individually and as a team member or leader on interdisciplinary and multidisciplinary teams (face-to-face, remote or hybrid).

    1

    Ability to work individually and within the discipline

    2

    Ability to work effectively as a team member or leader in multidisciplinary teams (face-to-face, remote or hybrid)

    9

    Verbal and Written Communication: Taking into account the various differences of the target audience (such as education, language, profession) on technical issues.

    1

    Ability to communicate verbally

    2

    Ability to communicate effectively in writing

    10

    Project Management: Knowledge of business practices such as project management and economic feasibility analysis; awareness of entrepreneurship and innovation.

    1

    Knowledge of business practices such as project management and economic feasibility analysis

    2

    Awareness of entrepreneurship and innovation

    11

    Lifelong Learning: Lifelong learning skills that include being able to learn independently and continuously, adapting to new and developing technologies, and thinking questioningly about technological changes.

    *1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest


    İZMİR EKONOMİ ÜNİVERSİTESİ GÜZELBAHÇE KAMPÜSÜ

    Detaylar

    KÜRESEL KARİYER

    İzmir Ekonomi Üniversitesi, dünya çapında bir üniversiteye dönüşürken aynı zamanda küresel çapta yetkinliğe sahip başarılı gençler yetiştirir.

    Daha Fazlası..

    BİLİME KATKI

    İzmir Ekonomi Üniversitesi, nitelikli bilgi ve yetkin teknolojiler üretir.

    Daha Fazlası..

    İNSANA DEĞER

    İzmir Ekonomi Üniversitesi, toplumsal fayda üretmeyi varlık nedeni olarak görür.

    Daha Fazlası..

    TOPLUMA FAYDA

    22 yıllık güç ve deneyimini toplumsal çalışmalara aktarmak..

    Daha Fazlası..
    İzmir Ekonomide yapacağın Lisansüstü eğitimle bir adım öndesin